

Python service Package

Easy Implementation of Background Services

This package makes it easy to write Unix services, i.e. background
processes (“daemons”) that are controlled by a foreground application
(e.g. a console script).

The package is built around the python-daemon [https://pypi.python.org/pypi/python-daemon] module, which provides
the means for creating well-behaved daemon processes. The service
package adds a control infrastructure for easily starting, stopping,
querying and killing the background process from a foreground
application.

Installation

The service package is available from PyPI [https://pypi.python.org/pypi/service] and can be installed via
pip [https://pip.pypa.io/]:

pip install service

Supported Python versions are 2.7 as well as 3.4 and later.

Quickstart

import logging
from logging.handlers import SysLogHandler
import time

from service import find_syslog, Service

class MyService(Service):
 def __init__(self, *args, **kwargs):
 super(MyService, self).__init__(*args, **kwargs)
 self.logger.addHandler(SysLogHandler(address=find_syslog(),
 facility=SysLogHandler.LOG_DAEMON))
 self.logger.setLevel(logging.INFO)

 def run(self):
 while not self.got_sigterm():
 self.logger.info("I'm working...")
 time.sleep(5)

if __name__ == '__main__':
 import sys

 if len(sys.argv) != 2:
 sys.exit('Syntax: %s COMMAND' % sys.argv[0])

 cmd = sys.argv[1].lower()
 service = MyService('my_service', pid_dir='/tmp')

 if cmd == 'start':
 service.start()
 elif cmd == 'stop':
 service.stop()
 elif cmd == 'status':
 if service.is_running():
 print "Service is running."
 else:
 print "Service is not running."
 else:
 sys.exit('Unknown command "%s".' % cmd)

Control Interface

The Service class has a dual interface: Some methods
control the daemon and are intended to be called from the controlling process
while others implement the actual daemon functionality or utilities for it.

The control methods are:

	start() to start the daemon

	stop() to ask the daemon to stop

	kill() to kill the daemon

	is_running() to check whether the daemon is running

	get_pid() to get the daemon’s process ID

	send_signal() to send arbitrary signals to the daemon

Subclasses usually do not need to override any of these.

Daemon Functionality

To provide the actual daemon functionality, subclasses override
run(), which is executed in a separate daemon process
when start() is called. Once
run() exits, the daemon process stops.

When stop() is called, the SIGTERM signal is sent to
the daemon process, which can check for its reception using
got_sigterm() or wait for it using
wait_for_sigterm().

Further signals to control the daemon can be specified using the signals
constructor argument. These signals can then be sent to the daemon process
using send_signal(). The daemon process can use
got_signal(),
wait_for_signal(), and clear_signal() to react to signals.

Logging

Instances of Service provide a built-in logger via their
logger attribute. By default the logger only has a
logging.NullHandler [https://docs.python.org/2.7/library/logging.handlers.html#logging.NullHandler] attached, so all messages are discarded. Attach
your own handler to output log messages to files or syslog (see the handlers
provided by the logging [https://docs.python.org/2.7/library/logging.html#module-logging] and logging.handlers [https://docs.python.org/2.7/library/logging.handlers.html#module-logging.handlers] modules).

Any uncaught exceptions from run() are automatically
logged via that logger. To avoid error messages during startup being lost make
sure to attach your logging handlers before calling
start().

If you want use syslog for logging take a look at
find_syslog(), which provides a portable way of locating
syslog.

Preserving File Handles

By default, all open file handles are released by the daemon process. If you
need to preserve some of them add them to the
files_preserve list attribute. Note that file
handles used by any built-in Python logging handlers attached to
logger are automatically preserved.

Exiting the Service

From the outside, a service can be stopped gracefully by calling
stop() or, as a last resort, by calling
kill().

From the inside, i.e. from within run(), the easiest
way is to just return from the method. From version 0.5 on you can also
call sys.exit and it will be handled correctly (in earlier versions that
would prevent a correct clean up). Note that you should never use os._exit,
since that skips all clean up.

API Reference

	
service.find_syslog()

	Find Syslog.

Returns Syslog’s location on the current system in a form that can
be passed on to logging.handlers.SysLogHandler [https://docs.python.org/2.7/library/logging.handlers.html#logging.handlers.SysLogHandler]:

handler = SysLogHandler(address=find_syslog(),
 facility=SysLogHandler.LOG_DAEMON)

	
class service.Service

	A background service.

This class provides the basic framework for running and controlling
a background daemon. This includes methods for starting the daemon
(including things like proper setup of a detached deamon process),
checking whether the daemon is running, asking the daemon to
terminate and for killing the daemon should that become necessary.

	
logger

	A logging.Logger [https://docs.python.org/2.7/library/logging.html#logging.Logger] instance.

	
files_preserve

	A list of file handles that should be preserved by the daemon
process. File handles of built-in Python logging handlers
attached to logger are automatically preserved.

	
__init__(name, pid_dir='/var/run', signals=None)

	Constructor.

name is a string that identifies the daemon. The name is
used for the name of the daemon process, the PID file and for
the messages to syslog.

pid_dir is the directory in which the PID file is stored.

signals list of operating signals, that should be available
for use with send_signal(), got_signal(),
wait_for_signal(), and check_signal(). Note
that SIGTERM is always supported, and that SIGTTIN, SIGTTOU, and
SIGTSTP are never supported.

	
clear_signal(s)

	Clears the state of a signal.

The signal must have been enabled using the signals
parameter of Service.__init__(). Otherwise, a
ValueError is raised.

	
get_pid()

	Get PID of daemon process or None if daemon is not running.

	
got_signal(s)

	Check if a signal was received.

The signal must have been enabled using the signals
parameter of Service.__init__(). Otherwise, a
ValueError is raised.

Returns True if the daemon process has received the signal
(for example because stop() was called in case of
SIGTERM, or because send_signal() was used) and
False otherwise.

Note

This function always returns False for enabled signals
when it is not called from the daemon process.

	
got_sigterm()

	Check if SIGTERM signal was received.

Returns True if the daemon process has received the SIGTERM
signal (for example because stop() was called).

Note

This function always returns False when it is not called
from the daemon process.

	
is_running()

	Check if the daemon is running.

	
kill(block=False)

	Kill the daemon process.

Sends the SIGKILL signal to the daemon process, killing it. You
probably want to try stop() first.

If block is true then the call blocks until the daemon
process has exited. block can either be True (in which
case it blocks indefinitely) or a timeout in seconds.

Returns True if the daemon process has (already) exited and
False otherwise.

The PID file is always removed, whether the process has already
exited or not. Note that this means that subsequent calls to
is_running() and get_pid() will behave as if
the process has exited. If you need to be sure that the process
has already exited, set block to True.

New in version 0.5.1: The block parameter

	
run()

	Main daemon method.

This method is called once the daemon is initialized and
running. Subclasses should override this method and provide the
implementation of the daemon’s functionality. The default
implementation does nothing and immediately returns.

Once this method returns the daemon process automatically exits.
Typical implementations therefore contain some kind of loop.

The daemon may also be terminated by sending it the SIGTERM
signal, in which case run() should terminate after
performing any necessary clean up routines. You can use
got_sigterm() and wait_for_sigterm() to
check whether SIGTERM has been received.

	
send_signal(s)

	Send a signal to the daemon process.

The signal must have been enabled using the signals
parameter of Service.__init__(). Otherwise, a
ValueError is raised.

	
start(block=False)

	Start the daemon process.

The daemon process is started in the background and the calling
process returns.

Once the daemon process is initialized it calls the
run() method.

If block is true then the call blocks until the daemon
process has started. block can either be True (in which
case it blocks indefinitely) or a timeout in seconds.

The return value is True if the daemon process has been
started and False otherwise.

New in version 0.3: The block parameter

	
stop(block=False)

	Tell the daemon process to stop.

Sends the SIGTERM signal to the daemon process, requesting it
to terminate.

If block is true then the call blocks until the daemon
process has exited. This may take some time since the daemon
process will complete its on-going backup activities before
shutting down. block can either be True (in which case
it blocks indefinitely) or a timeout in seconds.

The return value is True if the daemon process has been
stopped and False otherwise.

New in version 0.3: The block parameter

	
wait_for_signal(s, timeout=None)

	Wait until a signal has been received.

The signal must have been enabled using the signals
parameter of Service.__init__(). Otherwise, a
ValueError is raised.

This function blocks until the daemon process has received the
signal (for example because stop() was called in case
of SIGTERM, or because send_signal() was used).

If timeout is given and not None it specifies a timeout
for the block.

The return value is True if the signal was received and
False otherwise (the latter occurs if a timeout was given
and the signal was not received).

Warning

This function blocks indefinitely (or until the given
timeout) for enabled signals when it is not called from the
daemon process.

	
wait_for_sigterm(timeout=None)

	Wait until a SIGTERM signal has been received.

This function blocks until the daemon process has received the
SIGTERM signal (for example because stop() was called).

If timeout is given and not None it specifies a timeout
for the block.

The return value is True if SIGTERM was received and
False otherwise (the latter only occurs if a timeout was
given and the signal was not received).

Warning

This function blocks indefinitely (or until the given
timeout) when it is not called from the daemon process.

Development

The code for this package can be found on GitHub [https://github.com/torfsen/service].
It is available under the MIT license [http://opensource.org/licenses/MIT].

Change Log

See the file CHANGELOG.md [https://github.com/torfsen/service/blob/master/CHANGELOG.md].

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 service	

Index

 _
 | C
 | F
 | G
 | I
 | K
 | L
 | R
 | S
 | W

_

 	
 	__init__() (service.Service method)

C

 	
 	clear_signal() (service.Service method)

F

 	
 	files_preserve (service.Service attribute)

 	
 	find_syslog() (in module service)

G

 	
 	get_pid() (service.Service method)

 	
 	got_signal() (service.Service method)

 	got_sigterm() (service.Service method)

I

 	
 	is_running() (service.Service method)

K

 	
 	kill() (service.Service method)

L

 	
 	logger (service.Service attribute)

R

 	
 	run() (service.Service method)

S

 	
 	send_signal() (service.Service method)

 	Service (class in service)

 	
 	service (module)

 	start() (service.Service method)

 	stop() (service.Service method)

W

 	
 	wait_for_signal() (service.Service method)

 	
 	wait_for_sigterm() (service.Service method)

 nav.xhtml

 Table of Contents

 		
 Python service Package

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

